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iFly, Work Package 3, D3.1

Complexity metrics applicable to autonomous aircraft

14 January, 2009

Abstract

This is the first deliverable of work package 3 of the iFly project. The
objective of work package 3 is to study and develop methods for timely pre-
dicting potentially complex air traffic conditions that may be over-demanding
to the autonomous aircraft design. The characterization of encounter situa-
tions that appear safe from the individual aircraft perspective, but are actually
safety-critical from a global perspective can provide useful information for the
trajectory management and conflict resolution operations, and can also help in
identifying the potential ground support needs within the autonomous aircraft
Air Traffic Management (ATM) concept developed in the iFly project.

Deliverable 3.1 consists in a comparative study of the different metrics pro-
posed in the literature for complexity characterization and prediction in ATM.
Most of the metrics address ground-based ATM and are conceived so as to as-
sess the impact of a given air traffic configuration on the workload of the air
traffic controllers in charge of safely handling it. We review these metrics in
view of a possible application to advanced autonomous aircraft ATM systems.
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1 Introduction

An Air Traffic Management (ATM) system is a multi-agent system, where many
aircraft are competing for a common, congestible resource, represented by airspace
and runways space, while trying to optimize their own cost (travel distance, fuel
consumption, passenger comfort, etc.). Coordination between different aircraft is
needed to avoid conflicts where two or more aircraft get too close one to the other.
In principle, this can be achieved via a decentralized control scheme where each
aircraft evaluates the criticality of forthcoming encounters based on the informa-
tion on the current position and intended destination of neighboring aircraft, and
eventually coordinates with them to avoid that a conflict actually occurs. Notice
that in a decentralized approach to conflict detection each aircraft employs local
information only, and evaluates the criticality of the situation based on a partial
viewpoint. A high-level coordination layer can possibly be required to avoid safety-
critical encounters corresponding to a level of risk that is considered low by the
aircraft involved, but is actually high for the overall multi-aircraft system.

1.1 iFly work package 3

The objective of work package 3 is to study and develop methods for the timely
prediction of air traffic conditions that may be over-demanding to the autonomous
aircraft design. This is a crucial task for avoiding encounters that appear safe from
the individual aircraft perspective, but are actually safety-critical from a global
perspective. The characterization of globally safety-critical encounters can provide
useful information for the trajectory management and conflict resolution operations,
and can also help in identifying the potential ground support needs within the
autonomous aircraft ATM concept developed in work package 1 of the iFly project.

Work package 3 is structured in the following two sub-work packages:

WP3.1: Comparative study of complexity metrics. In this sub-work pack-
age, we shall carry out a critical survey of different metrics proposed in the
literature for complexity modelling and prediction in ATM. Most of the cur-
rent complexity metrics address ground-based ATM. Though this is reason-
able within the current centralized ATM system, where aircraft follow prede-
fined routes according to some prescribed 4D flight plan, it becomes restrictive
within advanced autonomous aircraft ATM systems.

WP3.2: Timely predicting complex conditions. In this sub-work package, we
shall study the problem of predicting complex conditions for autonomous air-
craft and developing an appropriate complexity metric. Aspects that need
to be addressed are the sensitivity to the prediction time, and various other
conditions. For work package 3 studies no specific choice is made regarding
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where to use the novel method, airborne and/or on the ground.

Work package 3 will receive input from work package 1, in terms of the Autonomous
Aircraft Advanced Concept of Operations (A3 ConOps). WP3 will provide input to
work package 8 as for ground support needs for the A3 ConOps, thus contributing
to the refinement of the A3 ConOps. Appropriate interaction with work packages
1 and 8 is required to identify potential areas of usage of complexity metrics and
clarify the requirements for the developed metrics.

The specification of the requirements on complexity metrics for the A3 ConOps is
one of the first activities planned under WP3.2, based on the precise formalization
of the A3 ConOps in Deliverable 1.3. As for the output to work package 8, a phase of
tuning with WP8.1 is planned for the last stage of WP3.2. The objective of WP8.1
is in fact integrating within the A3 ConOps the innovative methods for complexity
prediction and for multi-agent situation awareness inconsistency identification and
conflict resolution, developed within WP3, WP4, and WP5, respectively.

1.2 Objectives of Deliverable 3.1

Deliverable 3.1 is the outcome of the sub-work package 3.1 and consists in a com-
parative study of the different approaches proposed in the literature for air traffic
complexity modelling and prediction. Most of the current air traffic complexity stud-
ies relates to ground-based ATM, where the airspace is divided into sectors and Air
Traffic Controllers (ATCs) are in charge of guaranteeing safety in air travel within
their sector. In Deliverable 3.1, we revise these studies in view of a possible applica-
tion to advanced autonomous aircraft ATM systems, where part of the responsibility
in maintaining the appropriate separation between aircraft is delegated to the pilots.
In particular, pilots will take over the ATC tasks for separation assurance in self-
separation enroute airspace, and they will rely for this purpose on advanced tools
enabled by advanced technologies for sensing, communicating, and decision making.
Centralized control will assume a new role consisting in a higher level, possibly au-
tomated, supervisory function as opposed to lower level human-based control, which
should allow an increase in the airspace capacity without compromising safety.
Complexity measures that have been to some extent successful within the current
human-based centralized ATM system may actually be inappropriate within the
foreseen automated self-separation airspace.

1.3 Organization of the document

Deliverable 3.1 is structured as follows. In Chapter 2 we illustrate the notion of air
traffic complexity within the current ground-based ATM. As pointed out in Section
2.1, studying air traffic complexity is fundamental in this context to evaluate the im-
pact on the ATC workload of possible modifications of the ATM system introduced
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to adapt its capacity to the increased air traffic demand. For this reason, most of
the measures of complexity proposed in the literature try to incorporate the diffi-
culty perceived by ATCs in handling different air traffic situations. In order to use a
complexity metric as a traffic management tool, it is necessary to predict its future
behavior. In Section 2.2 we describe some of the approaches for air traffic complexity
modelling and prediction, and in Section 2.3 we compare them in view of a possible
application to advanced autonomous aircraft ATM design. The complexity-related
concepts of trajectory flexibility and aircraft clustering are described in Section 2.4.
In Chapter 3, we focus on an approach developed by ENAC that provides a measure
of the intrinsic complexity of air traffic, independent of the ATCs perceived diffi-
culty in accomplishing their task, and looks promising for application to advanced
autonomous aircraft ATM. Finally, in Chapter 4 we draw some final conclusions on
this survey on air traffic complexity, outlining possible directions of research under
WP3.2 on complexity characterization for enroute autonomous aircraft ATM.
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2 Air traffic complexity studies in the literature

2.1 Introduction

The growth in air traffic demand is pushing to its limit the current ground-based
ATM system. As reported in [28], in 2006 the average daily traffic above Europe
was 26286 flights per day, with an increase of 4.1% over 2005, whereas the total
delay increased by 4.6%, much more than expected based on the 4.1% of air traffic
growth.

In Figure 1 managed airspace is represented as a control system where ATM acts as
feedback controller of the airspace. The thick lines connecting the ATM and airspace
blocks represent multi-dimensional signals (airspace measurements and ATM ac-
tions). The objective of the ATM controller is to guarantee safety and efficiency
in air travel, despite the airspace system time-variability due, for instance, to tem-
porary structural modifications when the access to some areas is forbidden because
of military missions or bad weather conditions, and to disturbances like aircraft
entering/leaving the airspace because departing/landing at airports.

Figure 1: Managed airspace control scheme.

The main components of the current ATM system are the Air Traffic Control and
Traffic Flow Management functions. The former is in charge for maintaining the
appropriate separation between aircraft within the airspace, whereas the latter has
to define the flow patterns so as to ensure a smooth and efficient organization of
the air traffic. These two functions operate on different time scales, namely on a
mid-term and on a long-term time horizon, as detailed in Deliverable 5.1 of the
iFly project entitled “Comparative Study of Conflict Resolution Methods” where
resolution methods are distinguished based the reference time-horizon. The airspace
is structured into Air Traffic Control Centers (ATCCs) partitioned into sectors, each
controlled by a team of 1 to 3 Air Traffic Controllers (ATCs). Sectors are designed
so that the nominal flow of traffic through each sector can be safely handled by the
ATCs that are in charge of that sector. The ATCC capacity is limited by the sector
with the minimum capacity.

The basic control unit in mid-term control is plotted in Figure 2. In the feedback
control scheme, the controlled system is not the whole airspace but only a sector,
and the feedback controller is represented by the ATC which interacts with the
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controlled system through sensing and actuating interfaces. The exogenous input to
the control system represents aircraft entering/exiting the sector under consideration
and models the interactions with neighboring sectors. Information on the controlled
system behavior and on the exogenous input are provided to the ATC through
“sensors” (radar, software equipment, and radio connections), whereas the control
strategy is implemented issuing commands (speed, altitude, heading changes) to the
pilots via radio connections (the “actuators”).

Figure 2: Mid-term enroute control in ground-based ATM.

A method to accommodate air traffic growth within the current ATM system is
to adapt its capacity to the increased demand by appropriately redesigning the
airspace, reconfiguring sectors, modifying traffic patterns, and also reassigning staff,
[41, 83]. The most common operational means of increasing capacity is to parti-
tion a sector into smaller ones, each with an independent controller team. These
modifications are currently adopted temporarily in presence of extraordinary events,
as particular weather conditions or constraints on the airspace usage due, e.g., to
military missions. The purpose of such permanent or temporary modifications is
to avoid an increase of the ATC workload, which could eventually compromise air
travel safety and efficiency.

Generally speaking, ATC workload can be regarded as the mental and physical
effort involved in handling air traffic. In [66], workload is defined as “... a function
of three elements, firstly, the geometrical nature of the air traffic; secondly, the
operational procedures and practices used to handle the traffic and thirdly, the
characteristics and behavior of individual controllers (experience, orderliness, etc.)
...”. The configuration of sectors, in particular, is recognized as a main factor
affecting workload, [31], and workload is held responsible for limiting sector capacity
[15, 59, 67, 61]. In [30, 85], a macroscopic workload model is studied to assess sector
capacity.

Air traffic complexity, intended as a “... measure of the difficulty that a particular
traffic situation will present to an air traffic controller ...”, [66], is commonly thought
as responsible for generating workload.
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Since about forty years ago, air traffic complexity models have been studied to relate
airspace configuration and traffic to the workload of ATCs, introducing indicators
of the workload level that are based on airspace and air traffic measurements. The
work [18] is perhaps the first one to systematically examine the relationship between
air traffic complexity and controller workload.

It is generally recognized that a measure of the difficulty experienced by ATCs
in controlling air traffic is fundamental to evaluate how the current ground-based
ATM system is operated, and that it could also provide guidelines on how to obtain
more manageable sectors by reconfiguring the airspace and by modifying traffic
patterns. In [29], it is suggested that the capacity of an ATCC could be increased by
a timely prediction of the traffic complexity bottleneck areas and a reconfiguration
of the traffic patterns so as to evenly balance traffic complexity between sectors.
A “complexity resolution” algorithm is introduced for dynamically modifying flight
profiles to reduce the predicted complexity of more critical sectors and balance
the complexity of adjacent sectors. In [86], a methodology for optimal design of
airspace sectors is proposed. The airspace is partitioned into hexagonal cells and
each cell is assigned a workload measure. Then, the airspace sectors are constructed
by clustering algorithms using optimization methods. In [65], indicators of sector
workload are studied, that could be operationally useful to Traffic Management
Coordinators (TMCs) taking decisions affecting how much traffic ATCs will have to
handle as well as traffic complexity.

In the current practice, complexity of air traffic is commonly evaluated in terms of
number of aircraft and on a per-sector basis, [83]. Many researchers have found that
air traffic indicators other than the number of aircraft are relevant to ATC workload.
For instance, depending on the air traffic structure, ATC perceives situations with
the same number of aircraft in the sector as different. A list of “complexity factors”
is provided in the literature review [37]. Most researchers agree that complexity
depends on both structural and flow characteristics of air traffic, [67, 37]. The former
are fixed for a sector and given by spatial and physical attributes such as terrain
configuration, number of airways, airway crossings and navigation aids (static air
traffic characteristics). The latter vary as a function of time and depend on features
such as number of aircraft, weather, aircraft separation, closing rates, aircraft speeds,
mix of aircraft and flow restrictions (dynamic air traffic characteristics). These
static and dynamic factors interact in a nonlinear complex way to produce air traffic
complexity, [4, 59, 13]. Nevertheless, according to the literature review [37], most
of the complexity metrics developed to date depend heavily on the traffic density
alone.

Besides planning and redesign, improved measures of complexity could be of use
for the evaluation of air traffic management productivity, and the assessment of the
impact of new tools and procedures, [37].

It is perhaps worth mentioning that air traffic complexity has been studied in rela-
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tion not only with controller workload, but also with such different issues as:

- the occurrence of operational errors (events where two or more aircraft vio-
late the separation standard and the cause is attribute to ATC) or incidents,
[67, 36, 11, 76, 77, 84, 70];

- controller decision making, [68];

- the design of decision support and flight planning tools [19, 64, 78];

- conflict risk [3, 48, 80].

2.2 Approaches to air traffic complexity modelling and prediction

within ground-based ATM

Most studies on air traffic complexity in the literature have been developed with
reference to ground-based ATM. In this section, we review selected approaches to
air traffic complexity. For a more extensive overview, we suggest the comprehensive
literature reviews [67, 37].

Strengths and weaknesses of each approach are presented within its description.
A classification of the approaches based on characteristics that are relevant to au-
tonomous aircraft ATM is postponed to Section 2.3.

2.2.1 Aircraft density

The number of aircraft in a sector is the air traffic characteristic that has been most
cited, studied, and evaluated in terms of its influence on workload. It is, at the same
time, considered as the best available indicator of complexity and criticized for not
being able to appropriately characterize what controllers find complex. Currently,
it is the complexity measure most adopted in practice, possibly because it is easier
to interpret than other complexity measures: if the aircraft number exceeds the
operationally-defined threshold by four aircraft, then the situation is classified to be
of high-workload, and it can be resolved by removing four aircraft.

Sectors are designed so that the controllers are able to handle the usual flow of traffic.
In the event of increased demand or re-routing required due to weather conditions or
special use airspace constraints, Traffic Flow Management (TFM) techniques such
as staff reallocation and alternative airspace configurations are used for maintaining
the ATCs workload constant so as not to compromise safety and efficiency levels. In
the United States, the peak aircraft count (the largest number of aircraft in a sector
during any minute of a 15 minutes time interval) is compared with an acceptable
peak traffic count value determined by traffic flow managers based on practical
experience, and adopted for operational TFM decisions like re-routing flights out of
an overloaded sector, [65]. The drawbacks of this measure are that it is insensitive
to the duration of a high workload period, it is very sensitive to the entry and exit
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times of a few flights which do not change the amount of sustained workload. In
addition, this measure does not take into account such factors as the traffic pattern,
traffic mix, weather, etc., that may greatly influence the actual workload levels
experienced in practice. Finally, it is important to remark that operational errors
are more likely to occur after rather than during a peak in traffic count, as suggested
in [76], a simulation study involving a human-in-the-loop.

The European Flow Management Positions (FMP) staff determines the airspace
configuration schedule (successive aircraft configuration during the day) by splitting
or merging sectors based on the number of ATCs on duty and the traffic load assessed
by means of flight counts and sector capacities. In [32], it is suggested that more
realistic airspace configurations could be obtained by adopting more appropriate
complexity metrics.

The Enhanced Traffic Management System (ETMS) is a decision support system
for traffic management whose monitor/alert function is based on a comparison of
the prediction of traffic volume in the sector against some established threshold
volume representing the maximum number of aircraft that the ATCs are willing to
accept in that sector. Threshold volume, however, does not adequately represent
the actual ATC workload since, in certain circumstances, controllers accept traffic
beyond the threshold, whereas, in other circumstances, they reject it although the
number of aircraft is well below the threshold. The level of organization of the
traffic should be considered jointly with the air traffic volume, since, depending on
the air traffic structure, ATC perceives situations with the same number of aircraft
in the sector as different. It is recognized by the Radio Technical Commission on
Aeronautics (RTCA) that this monitor/alert function should be integrated with
more precise measures of sector complexity and controller workload to adequately
represent the level of difficulty experienced by the controllers under different traffic
conditions, [1]. Also, the behavior in time of the traffic volume affects workload: a
traffic volume that highly fluctuates over time is more likely to generate conflicts
and appears more complex to the controller than a uniform traffic flow, [27]. Air
traffic controllers adapt their strategy to regulate the workload as the traffic vol-
ume increases, sacrificing secondary objectives in order to maintain their principal
objectives, [81, 82]. For example, in a low traffic situation, they take into account
performance objectives when solving conflicts, whereas, as the traffic level increased,
they are only concerned with guaranteeing the appropriate separation between air-
craft. Moreover, controllers select operating procedures based on economy, i.e., as
air traffic density increases, they use less costly procedures to avoid overload.

2.2.2 Dynamic density

Dynamic density, [46, 56, 83, 49, 50, 64, 65], is a metric for assessing the controller
activity level in a sector that was introduced within a research program in U.S.
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involving FAA, NASA, MITRE, and Wyndemere Corporation as main participants.
Laudeman et al from NASA, [56] defined dynamic density as “a measure of control-
related workload that is a function of the number of aircraft and the complexity of
traffic patterns in a volume of airspace”.

Dynamic density is a single aggregate indicator obtained as a linear combination
of traffic density and other controller workload contributors (the number of air-
craft undergoing trajectory change and requiring close monitoring due to reduced
separation) identified through interviews to several qualified air traffic controllers.

More precisely, dynamic density is the weighted sum of the number of aircraft and
the following aggregate indicators of the aircraft changing geometries during a one-
minute sample time interval:

• the number of aircraft with heading change > 15 degrees,

• the number of aircraft with speed change > 0.02 Mach,

• the number of aircraft with altitude change > 750 ft,

• the number of aircraft with 3-D Euclidean distance between 0-5 nautical miles
excluding violations,

• the number of aircraft with 3-D Euclidean distance between 5-10 nautical miles
excluding violations,

• the number of aircraft with lateral distance between 0-25 nautical miles and
vertical separation < 2000/1000 feet above/below 29000 ft,

• the number of aircraft with lateral distance between 25-40 nautical miles and
vertical separation < 2000/1000 feet above/below 29000 ft,

• the number of aircraft with lateral distance between 40-70 nautical miles and
vertical separation < 2000/1000 feet above/below 29000 ft.

The weights were determined both by subjective ratings obtained showing different
traffic scenarios to the interviewed controllers and by regression analysis of con-
trollers activity data. The dynamic density measure with subjective weights was
validated in an operational environment and showed to be highly correlated with
observed controllers activity, more than the traffic volume.

Note that the complexity indicators entering the dynamic density metric depend
on the aircraft trajectories during a one-minute sample time interval and do not
include observed metrics of the ATCs physical work such as data entry and radio
communications. By using trajectory prediction tools, it is then possible to project
the dynamic density measure over a suitable time horizon so as to forecast future
workload levels and use this information for traffic management purposes.
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In [83], the future values of the dynamic density in a sector are computed based
on the aircraft positions and speeds predicted by the Center-TRACON Automation
System (CTAS, [26]) using aircraft dynamic models, flight plans, radar tracks within
the Air Route Traffic Control Center (ARTCC), and weather data.

Apparently, dynamic density can be accurately predicted 5 minutes in advance
(short-term prediction). The long-term prediction over a 20 minutes time hori-
zon is affected by errors that can be reduced by integrating in CTAS inter-Center
data on aircraft entering the ARTCC. The performance obtained in the 20 minute
range prediction suggests that there is further room for improvement, both in the
trajectory prediction tool and in the dynamic structure of the model. Sources of
prediction errors are aircraft departures within the considered sector, wind predic-
tion and radar tracker. Also, prediction does not take into account the ATCs action
(open loop prediction).

There are some important weaknesses regarding dynamic density to be aware of.
First of all, the computed weights are extremely variable from sector to sector and
therefore need to be re-estimated and re-validated for each sector (and possibly
periodically retuned). Also, the proposed dynamic density model for air traffic
complexity is actually a static model, that does not incorporate explicitly neither
future predicted aircraft topology, neither past state information. The predictions
of the dynamic density future behavior is calculated with the same equation using
the predicted values of the complexity factors involved as provided by the adopted
trajectory prediction tool. Therefore, the prediction capabilities allegedly attributed
to the dynamic density indicator are in fact a merit of the prediction tool. Further-
more, it is difficult for decision makers as Traffic Management Coordinators (TMCs)
to understand from a single aggregate measure how to solve a high-workload sit-
uation. Information on which complexity factor has caused the problem is in fact
lost. On the other hand, having too many complexity factors to analyze may slow
down the decision process due to overload in information processing. Potentially
nonlinear relations between complexity indicators are missed, [38]. The results of
the dynamic density work could be improved by adopting non-linear techniques, in-
cluding neural networks, genetic algorithms, and non-linear regression, [50]. Finally,
the adopted indicator of the controller workload used to determine the weights is
critical. Behavioral measurements miss the cognitive aspects of controller activity.
Subjective ratings are often subject to biases.

Dynamic density is used in a variety of contexts in the literature and does not
correspond to a single metric. Overall, there is a significant consensus over 20-30
dynamic density metrics. Most of the factors used in dynamic density models are
dynamic traffic characteristics that are generally useful for realtime decision support.
Various linear and nonlinear methods are used to perform the correlation.

A human-in-the-loop simulation study with controllers actively controlling traffic in
a real-time simulation environment was performed in [52] with the two-fold objective
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of introducing a new dynamic density complexity model and of validating dynamic
density versus aircraft count. In [51], it was also shown that the measurement of
complexity using the dynamic density is better than a simple aircraft count for both
the instantaneous and the predicted complexity measures.

In [65], the use of dynamic density as an operationally useful sector workload mea-
sure for enabling TFM personnel to prevent overloads is investigated. The dynamic
density metric is defined as the weighted sum of multiple sector workload factors. 12
complexity factors out of a set of 41 were selected based on their correlation to the
subjective measure of the workload experienced by ATCs and their predictability,
avoiding redundancy. The study of the dependence of the resulting dynamic density
metric on the considered airspace reveals that different factors contribute to the
perceived difficulty in different centers.

The instantaneous positions and speeds of the traffic itself do not appear to be
enough to describe the total complexity associated with an airspace. Efforts to de-
fine dynamic density have identified the importance of a wide range of potential
complexity factors, including structural considerations. A few previous studies have
attempted to include structural consideration in complexity metrics, but have done
so only to a restricted degree. The importance of including structural considera-
tion has been explicitly identified in work at Eurocontrol. In a study to identify
complexity factors using judgement analysis, Airspace Design was identified as the
second most important factor behind traffic volume [54]. Histon et al. [39, 40]
investigated how this structure can be used to support structure-based abstrac-
tions that controllers appear to use to simplify traffic situations (cognitive aspect
affecting workload). Within the dynamic density research program, the Wyndemere
Corporation proposed a dynamic density metric that included a term based on the
relationship between aircraft headings and the dominant geometric axis in a sector
[46]. Also, specific emphasis on the traffic and airspace characteristics that impact
the cognitive and physical demands placed on the controller was given. An attempt
was made to include the level of knowledge about the intent of the aircraft.

Many approaches to air traffic complexity characterization by a dynamic density
model similar to that in [56] are proposed in the literature (see, e.g., the survey [37]),
where various sector and aircraft status indicators are correlated to the perceived
workload on a relevant dataset of ATC activity recording. In [39], sector workload
factors to be combined in a single workload metric are classified into airspace de-
sign factors, dynamic traffic characteristics, and operational factors, and a list per
category is provided. The importance of representing complexity in a way that can
help TMCs deciding on actions affecting the ATCs workload is pointed out in [65].
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2.2.3 Interval complexity

Recently, the interval complexity of a sector was introduced as an estimate of the
ATC workload in that sector, [29]. The interval complexity of a sector is defined as
the average over a time window of the linear combination of the following complex-
ity factors: number of aircraft flying within the sector, number of aircraft flying on
nonlevel segments, and number of aircraft flying close to the border. Nonlevel flights
and flights close to the boundary of a sector in fact require special attention and
procedures to be followed by the ATC. The weights in the linear combination depend
on the specific sector. Interval complexity can be considered as a smoothed version
of a dynamic density-like complexity measure. The prediction of this measure of
complexity over a time horizon of 20 to 90 minutes is used for selecting appropri-
ate “complexity resolution” actions minimizing and balancing traffic complexities
between adjacent sectors of a certain airspace region.

2.2.4 Fractal dimension

A characterization of traffic structure based on the fractal dimension of the traffic
pattern has been proposed in [69]. Fractal dimension is a metric suggested for com-
paring traffic configurations resulting from various operational concepts. It allows
in particular to decouple the complexity due to airspace partitioning in sectors from
the complexity due to traffic flow features.
The dimension of (compact) geometrical figures is well-known: a curve is of dimen-
sion 1, a surface of dimension 2, and so on. It is quite simple to derive those integers
from a covering measure since the minimal number of balls of radius ε needed to
cover the object will evolve roughly as

(
1
ε

)d as ε → 0, d being the dimension. Frac-
tal dimension is simply the extension of this concept to more complicated figures,
whose dimension may not be an integer. The block count approach is a practical
way of computing fractal dimensions. It consists in considering a rectangular grid of
size ε and counting the number N of blocks of linear dimension ε covering the given
geometrical entity. Then, the fractal dimension of the geometric entity is defined
as:

d = lim
ε→0

log N

log(1
ε )

.

The application of this concept to air route analysis consists in computing the frac-
tal dimension of the geometrical figure composed of existing air routes. Currently,
aircraft cruise on linear routes at specified altitudes, corresponding to a geometrical
dimension of 1. In the future, it is expected that flights will be allowed to move from
these linear routes. If all of the airspace was covered by routes, the fractal dimen-
sion of the future route structure would be 3. However, there will still be preferred
routes (due to the position of connected airports, or to wind currents, etc.), thereby
decreasing the actual dimension of the route structure.
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An analogy of air traffic with gas dynamics then shows a relation between frac-
tal dimension and conflict rate (number of conflicts per hour for a given aircraft).
Fractal dimension also provides information on the number of degrees of freedom
used in the airspace: a higher fractal dimension indicates more degrees of freedom.
This information is independent of sectorization and does not scale with traffic vol-
ume. Fractal dimension is thought to be an aggregate metric for measuring the
geometrical complexity of a traffic pattern, and is an example of complexity metric
indepenedent of workload aspects. The important point about fractal dimension
is that it is a long term structural complexity metric: fractal dimension must be
thought as a geometrical feature of a limit shape obtained by observing trajectories
on an infinite time period. The fact that timing information is a main limitation of
fractal dimension as a complexity measure.

2.2.5 Input-output model

In [57, 58], air traffic complexity is defined in terms of the control effort needed to
avoid the occurrence of conflicts, i.e., of those situations where the relative aircraft
distance gets lower than a given safe distance, when an additional aircraft enters the
airspace. For this purpose the authors introduce an input-output system consisting
of the air traffic within the region of the airspace under consideration and a feedback
controller, similarly to Figure 2, with the ATC replaced by an automatic solver and
the airspace sector by an airspace region. The input to the closed-loop system
is represented by the (fictitious) aircraft entering the airspace region, whereas the
output is given by the deviation from their original flight plans issued by the feedback
controller to the aircraft already present in the airspace so as to avoid conflicts. The
deviation imposed by the controller is taken as measure of the air traffic complexity.

Each aircraft i is described by a very simple 2D kinematic model:

ẋi = Vi cos θi ẏi = Vi sin θi

where (xi, yi) denotes the aircraft position at some fixed altitude, Vi the speed, and
θi the heading. For the computation of the air traffic complexity it is assumed that a
conflict solver is available as controller and that every aircraft can instantly change
the heading θi but has to keep the speed Vi constant. Based on these assumptions,
complexity is computed as follows: introduce an additional aircraft in the traffic at
a given point with an arbitrary bearing, launch the conflict solver for the obtained
air traffic situation, and count the overall number of manoeuvres needed to recover
a conflict-free condition.

A solver based on mixed integer programming is used. This solver determines the
conflict resolution maneuvers that minimize the total heading change. Complexity
can then be measured as the total change in heading summed over all aircraft, and
a “complexity map” as a function of the entering aircraft position and bearing can
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be built. A scalar measure of air traffic complexity, e.g., the “worst-case” value for
the control activity, can be extracted from the complexity map.

Note that different measures of the control effort and different solvers could be used,
and that the choice of the conflict solver has a large impact on complexity evaluation.

2.2.6 Intrinsic complexity measures

Some researchers were not so inclined to acknowledge a direct cause-effect relation
between complexity and workload, and also that the relationship between the two
can be adequately expressed mathematically. This has led to a radically differ-
ent view of the complexity issue, which aims at building metrics of the “intrinsic”
complexity of the air traffic distribution in the airspace, without incorporating any
measure of the ATC workload, [21]. According to this viewpoint, complexity met-
rics should capture the level of disorder as well the organization structure of the air
traffic distribution, irrespectively of its effect on the ATC workload.

Two classes of intrinsic complexity metrics are presented in [21], both based on the
(objective) measurements of the aircraft velocities and positions. The first class
consists in a geometrical approach where complexity is a function of the relative po-
sition vectors and relative velocity vectors of the aircraft. The second class describes
traffic flow organization using the topological Kolmogorov entropy of a dynamical
system modelling air traffic.

The approach based on topological entropy was further developed in later works,
[20, 23, 22], where the authors explore both linear and nonlinear system modelling
of air traffic to derive topological entropy measures for air traffic complexity charac-
terization. The limitations of the linear modelling-based approach is that it provides
only a measure of the global tendency of the traffic, and that it does not fit exactly
with all traffic situations. Then, nonlinear extension can be used to produce maps
of local complexity thus allowing for the identification of critical air traffic areas.
This approach is discussed in detail in Chapter 3.

Inspired by [21, 23, 22], in [47] an interpolating velocity vector field is determined
based on a snapshot of the air traffic, with each aircraft represented by a point at
a certain position and with a certain velocity. The interpolating vector field should
satisfy some constraints related to maneuvers feasibility (minimum and maximum
speed, and continuity to limit acceleration and turn rate). If a smooth vector field
is found, aircraft can follow non intersecting trajectories and the introduction of an
additional aircraft causes a marginal increase in complexity. If no smooth solution
is found, then the continuity constraint is relaxed, which leads to the introduction
of a separation boundary where the vector field loses continuity. Complexity can be
evaluated based on the representation of the resulting vector field. The location of
the separation boundary corresponds to critical areas. The main challenge of the
approach is computing the separation boundary in real-time.
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2.3 Discussion on the approaches to air traffic complexity

2.3.1 The workload issue

The literature on air traffic complexity refers mainly to the current ground-based
ATM system, and studies air traffic complexity as a means to quantify the ATC
workload, intended in general terms as the difficulty perceived by ATCs in safely
handling air traffic. Given a certain air traffic situation, a measure of the air traffic
complexity should be computed based on the available information on the air traffic
characteristics so as to provide an indicator of the expected ATC workload.

A main issue that makes the problem difficult (and actually not so well-posed) is that
a clear and globally accepted definition of ATC workload is actually not available in
the literature, as pointed out in [60] stating that “controller workload is a confusing
term and with a multitude of definitions, its measurement is not uniform”. Workload
depends both on the difficulty and demands of a task (task load) and on the effort in
terms of physical and mental activities required to accomplish the task, [36]. ATCs
use spatial and temporal traffic patterns seen on the display along with their domain
knowledge for controlling air traffic. As shown in Figure 3, the relationship between
air traffic complexity and ATC workload is an indirect one that is highly mediated
by the influence of cognitive strategies and individual variables of the controller, and
quality of the equipment, [67]:

• The amount of workload experienced by ATCs is modulated by the informa-
tion processing and decision-making strategies adopted, [81, 55, 17, 37]. There
are very few constraints on how controllers should handle traffic beyond that of
maintaining adequate separation between aircraft. Thus the space of possible
solutions is large and can accommodate a variety of resolution strategies. Con-
trollers use more economical procedures to address more difficult tasks, and
the knowledge of appropriate procedures depends on training and job expe-
rience. As traffic volume increases, ATCs adapt their information processing
and decision-making strategies in an attempt to regulate workload. Controllers
use more economical control procedures and more standard strategies to con-
trol air traffic at higher traffic densities, often resorting to heuristics developed
with the experience. They react to task load fluctuations with compensatory
strategies such as shedding or deferring tasks, prioritizing tasks, or becoming
more cautious in bad weather, [53]. In this way, they preserve their cognitive
resources available for the task.

• Workload results from the task/operator interaction, which is largely variant
depending on the specific task and the specific operator. Even for a given
task/operator pair the workload may vary due to individual factors such as
age, skill, experience, and anxiety level, and contingent factors such as time
pressure, noise, stress, distraction. The workload history affects the perceived
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complexity as a long period of heavy load tends to reduce the ATC efficiency.

• The ATC software equipment also influences the workload. The way infor-
mation is displayed, in particular, affects the ATC capabilities of processing
information and abstracting the underlying structure of a traffic pattern, which
is essential to understanding and simplifying it, [41]. The way information is
presented to ATCs and the availability of automation tools may influence the
workload.

Figure 3: Mediating factors affecting the impact of air traffic complexity on work-
load.

According to the model discussed in [37], the ATC activity consists of four ele-
ments: monitoring, evaluating, formulating decisions, and implementing decisions,
[71], which maps into the Input, Processing, and Response (I, P, and R) phases
of human information processing. The P-phase of the ATC activity can eventually
involve the support of automated tools. Workload is the response to the I-P-R effort
mediated by Performance Shaping Factors (PSFs) such as skill, fatigue, age, train-
ing, proneness to anxiety, etc. The ATC workload is a function of both the task
load (determined not only by the complexity of the air traffic situation but also by
the available interfaces for sensing the air traffic situation and for implementing the
control strategy) and the internal and subjective response to task load.

Figure 4: Model of the Air Traffic Controller, [37].

In many approaches, by empirically correlating the measured workload to the avail-
able measurements of airspace configuration and traffic patterns, workload and air
traffic measurements are incorporated within a single aggregate complexity indi-
cator for the purpose of describing the ATC perceived complexity (see Figure 5).
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While nearly all of the studies found a statistically significant correlation between
air traffic factors and workload, not all airspace factors were related to the same
measure of workload, which makes difficult to compare the different approaches to
air traffic complexity. Clearly, the choice of the variable that measures the workload
is crucial to determine how well complexity is actually evaluated.

Figure 5: Complexity evaluation within ground-based ATM.

Workload can be measured using direct subjective indicators (such as self-report
measures and controller’s rating obtained through some questionnaire) or indirect
indicators including behavioral/physical activity (e.g., key strokes, slew ball entries,
number of control actions, communication time, decision and action frequency) and
physiological (e.g., EEG/EMG/EOG, blood pressure, heart rate measures, eye blink
rate, respiration, biochemical activity, pupil diameter) indicators. Various data
collection methods are listed in [37].

Workload is often indirectly and partially evaluated by measuring task performance
such as time to perform discrete ATC tasks, [14]. In this way, the cognitive process
(including planning, decision making, strategy, and factors such as skill, training, ex-
perience, fatigue, etc.) of the controller is masked. A list of “workload indicators” is
provided in the literature review [37]. The issue of evaluating ATC performance and
workload based on data collected from operational and simulated air traffic control
is discussed in [75], where an extensive taxonomy of air traffic control measurements
adopted in the literature is provided.

Subjective measures suffer from several drawbacks, such as memory effects, un-
willingness to report damaging information, etc (however, it should be noted that
workload is –after all– a subjective reaction to traffic complexity). In [62, 63],
the relevance of measures of the controller activity for realtime decision support is
evaluated. Communications measures are found to be correlated with subjective
workload, but not to provide any incremental benefit when used for prediction of
its future behavior. Certain physical parameters related to the interaction with the
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workstation (route displays and strips requests) are found to be not well correlated
with controller performance and mental workload, whereas others (such as data
entries) as significantly correlated.

With respect to behavioral measures it should be noticed that controller activity is
not necessarily related to effort, since controllers may employ strategies to maintain
specific traffic patterns. Also, most workload is actually unobservable mental activ-
ity. The monitoring, evaluating, and planning activities involved in the ATC task
generate mental effort, but only the implementing action is directly observable (see
Figure 4). In any case, both direct and indirect workload measurements are very
expensive to collect, since they require the active participation of controllers.

Notice also that there does not exist any such thing as a “standard” or “average”
controller, to use for standardized workload evaluation, and it seems hazardous to
maintain that a complexity measure is well correlated with workload without taking
into account the experience and skill of the operators involved in the workload
assessment.

In [79] and [2], an attempt is made to model human-machine interaction for ATC ac-
cording to a system engineering approach. Queuing theory is used in [79] to analyze
ATC workload and the resulting mathematical model is validated on ATC opera-
tional data to predict average delay and server occupancy as a function of demand.
A control theory-based approach is considered in [2] to describe the ATC system.
Apparently, the proposed model involving different functions (planning, controlling,
communicating, and data management) has not been empirically evaluated.

Finally, as in [32, 33, 34], the airspace configuration, with sectors possibly split
or merged, is suggested as a measurable variable of the ATC workload to deter-
mine those factors that are relevant to complexity evaluation through a correlation
analysis based on neural networks.

2.3.2 Classification of the revised approaches

It is difficult to compare the results from all the different studies on air traffic
complexity because of the wide variety of indicators used to assess it. What is more,
indicators of air traffic complexity are often mentioned “at a high level” without
precisely defining them and specifying how they should be measured, especially in
non-empirical works, [15].

Here, we focus on the approaches reviewed in Section 2.2 and classify them with
respect to some characteristics that are relevant to the autonomous aircraft appli-
cation.

As discussed before, those complexity metrics where workload and air traffic mea-
surements are incorporated within a single aggregate indicator for the purpose of
describing the ATC perceived complexity depend on the specific notion and mea-
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sure of workload adopted, and inherently incorporate various human factors aspects.
Also, such workload-oriented metrics are sector-based (in [29], reference is even di-
rectly made to complexity of a sector as an estimate of the ATC workload of that
sector), and often show structural dependence on the sector characteristics, which
further limits their applicability to a sector-free context such as autonomous aircraft
ATM.

The various dynamic density-like metrics and the interval complexity are clearly
workload-oriented and sector-based measures of complexity. The same holds for the
aircraft density, since complexity is evaluated by comparing the number of aircraft
in a sector with a threshold determined based on the capabilities of ATCs to safely
handle air traffic in that sector.

The difficulty in obtaining reliable workload measures has been one of the strongest
motivations for investigating complexity metrics independent of the ATC workload
in the context of ground-based ATM. These metrics can be control-dependent or
control-independent, in that the evaluation of complexity can explicitly account for
the controller in place or not. The input-output model is a control-dependent metric,
since complexity is evaluated in terms of control effort, whereas fractal dimension
and intrinsic complexity measures are control-independent. All workload-oriented
metrics are obviously control-dependent.

Control-independent metrics do not require the knowledge of the controller in place,
which is indirectly accounted for through the effect of its action on the air traf-
fic organization. This makes them better suited for the airborne self-separation
framework.

Figure 6: Control scheme in autonomous aircraft ATM.

In autonomous aircraft ATM, control is delegated to the aircraft according to a par-
tially decentralized control scheme where aircraft eventually communicate one with
the other (air-to-air communication) and with the ground (air-to-ground commu-
nication) to get information on the other aircraft intent through the System Wide
Information Management (SWIM) system, as schematically represented in Figure
6. As a result, the controller has a decentralized time-varying structure, difficult to
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characterize for the purpose of control effort evaluation, and possibly involving the
pilots in the decisions on trajectory management and conflict resolution. A notion of
complexity explicitly accounting for a human-in-the-loop component would present
the drawbacks that are common to all system engineering approaches applied to
model human-machine interaction, that is:

i) Decision making or planning are generally unobservable processes and mea-
surements are largely unreliable (due, e.g., to time varying human behavior
and to differences between individuals).

ii) Humans typically do not “optimize” but rather try to “satisfy” the require-
ments, choosing a solution that is satisfactory though not necessarily the best
one. As a consequence, prediction of decision making processes is hard.

iii) Analytic modeling of human behavior is strictly related to the specific context
(pervasiveness of task environment).

Thus, a control-independent measure of complexity appears to be the better suited
in view of the introduction of an airborne self-separation ATM system.

For those complexity measures that are computed based on the air traffic state
rather than the whole aircraft trajectories, complexity prediction can be obtained
by projecting in the future the air traffic state and recomputing the complexity
measure, whereas those measures that take into account the aircraft trajectories
are naturally evaluating complexity over a prediction time horizon. In any case,
the reliability of the resulting complexity prediction depends on that of the aircraft
trajectories prediction. Surprisingly, it seems that uncertainty in the trajectory
prediction is not accounted for in any of the (deterministic) approaches proposed in
the literature.

Depending on the reference time horizon, complexity metrics could be useful for
conflict resolution or for trajectory planning (tactical and strategic decisions). In this
respect, those approaches providing a spatial complexity map could help isolating
critical areas and support trajectory management. The practical impact of those
approaches providing a scalar aggregate indicator of complexity is instead not so
clear in most cases.

A further aspect that is interesting to point out is if and how the metric takes into
account the organization of traffic, which is recognized as an important factor in the
assessment of complexity.

Table 1 is a schematic classification of the approaches reviewed in Section 2.2 based
on the aspects mentioned above, that is: the data required for complexity evaluation;
the output provided; the reference time horizon; dependence on the controller, on
the sector, and on the traffic organization. A rough evaluation of the computational
load is also given, which is obviously an important information for the design of a
time critical task such as air traffic management.
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2.4 Concepts related to air traffic complexity

2.4.1 Trajectory flexibility

A concept that is intimately related to air traffic complexity is that of flexibility of
the aircraft trajectory, i.e., the extent to which a trajectory can be modified without
causing a conflict with neighboring aircraft or entering a forbidden airspace area.

The use of flexibility measures in an airborne self separation framework is the object
of an ongoing research activity by NASA [44, 45, 43]. In the short/medium term
flexibility is used as a criterion to rate different conflict resolution maneuvers, so
that the adopted solution is the easiest to adapt to unexpected behavior by intruder
traffic. In the long term horizon, a flexibility preservation function is adopted to plan
the aircraft trajectory by minimizing its exposure to disturbances such as weather
cells and dense traffic areas.

Flexibility is evaluated in terms of two different characteristics, namely robustness
and adaptability to disturbances. Robustness is defined as the ability of the air-
craft to keep its planned trajectory unchanged in response to the occurrence of a
disturbance, and is measured as the fraction of operationally feasible trajectories
that keep feasible. Adaptability is defined as the ability of the aircraft to change
its planned trajectory in response to the occurrence of a disturbance that makes
the current planned trajectory infeasible. Adaptability is measured as the amount
of feasible trajectories that avoid the conflict while respecting all the navigational
constraints.

The work [43] discusses computational aspects related to the actual computation of
such metrics in a probabilistic setting. Simplified scenarios are explored, where a 2D
space is considered and only 1 degree of freedom (e.g., speed or path stretch) is an-
alyzed at a time for trajectory modification. The concepts, however, are extendable
to a more general setting.

2.4.2 Aircraft clustering

Aircraft clustering consists in identifying groups of closely spaced aircraft and was
originally studied in connection with conflict resolution. With reference to the con-
flict resolution problem, clustering should isolate all the aircraft involved in multiple
conflicts close in time and ensure that solving conflicts within each cluster separately
will not generate any new inter-cluster conflict.

Assuming that aircraft density is a relevant factor for complexity characterization,
[37, 54], cluster identification can complement and accelerate complexity assessment
by isolating those airspace areas where concentrating the attention. Once a high
density area is identified by aircraft clustering, the following step is to evaluate its
complexity, so as to eventually determine those critical airspace areas that should
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be avoided.

Clusters play within the advanced autonomous ATM system a role similar to sectors
within the centralized human-operated ATM system. Under current operations,
airspace congestion refers to a sector that cannot accept additional aircraft due
to ATC workload limitations. In view of automated separation assurance, which is
independent of the airspace geometry, a methodology for identifying aircraft clusters
is suggested in [7, 6] as a first step towards obtaining a sector-independent evaluation
of the airspace congestion: aircraft clusters are isolated first and then congestion is
evaluated based on cluster complexity.

We next briefly illustrate the main contributions in the literature on aircraft clus-
tering, making the description uniform by adopting a common mathematical frame-
work. No evaluation of which approach is best suited to support complexity evalu-
ation in the autonomous aircraft case is given at this stage.

Let A be a set of aircraft in the airspace S ⊂ R3 of interest (in our case the self-
separation enroute airspace), and T ⊂ R+ some reference time interval. The flight
of aircraft a ∈ A can be described through some function pa = (xa, ya, za) : T → S,
where pa(t) = (xa(t), ya(t), za(t)) represents the position of aircraft a at time t ∈ T .
We denote by Ch,v

T ⊆ A×A the collection of aircraft pairs that get closer than some
distance specified in terms of horizontal and vertical separation, during the time
interval T , i.e.

cab := (a,b) ∈ Ch,v
T

m
∃ts, tf ∈ T : de

(
(xa(t), ya(t)), (xb(t), yb(t))

)
< h ∧ de(za(t), zb(t)) < v, ∀t ∈ [ts, tf ]

where de(w1, w2) denotes the Euclidean distance between vectors w1 and w2 and
h, v are some positive constants.

Note that Ch,v
T is a relation over A that is symmetric (if cab ∈ Ch,v

T then cba ∈ Ch,v
T ,

a, b ∈ A) and reflexive (caa ∈ Ch,v
T , ∀a ∈ A), but not transitive. The transitive

closure of Ch,v
T allows to partition set A in equivalence classes, each class, say E =

{a, b, c}, corresponding to a cluster of aircraft that get close one to the other directly
(cab ∈ Ch,v

T ) or indirectly ( cac, ccb ∈ Ch,v
T but cab 6∈ Ch,v

T ), [35]. When clustering is
used for the purpose of conflict resolution, h and v can be set equal to the minimum
safe horizontal and vertical distances, and clustering constitutes a preliminary step
towards a global rather than a pairwise approach to conflict resolution, which may
turn out to be the only way to guarantee safety.
The aim of [35] is to study cluster structure, compare clusters in traffic with direct
routes to the one with standard airways, and study the sensitivity of cluster size to
simulated uncertainties on trajectories forecast. In [35], clusters are represented by
graphs where aircraft are nodes and conflicts are edges. Several ways of assessing
the structure of clusters are introduced:
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• the number of nodes;

• the number of edges;

• the diameter of the graph of the cluster;

• the graphic sequence

The graphic sequence is defined as a sequence of numbers that can be the degree
sequence of a graph (a degree of a node is the number of attached edges).
The paper first presents how structure variability (in terms of graphic sequences)
grows with the number of aircraft in a cluster. Then the two scenarios (traffic with
direct routes and traffic with standard airways) are simulated with the conclusion
that direct routes traffic results in less conflicts. On the other hand, the cluster
diameter as a function of the number of aircraft is slightly larger for direct routes
scenario. Experiments with added uncertainty showed that more clusters are de-
tected, therefore a good trajectory prediction/knowledge is needed in order not to
overwhelm the conflict resolution module.

The disadvantage of this approach is that if aircraft a and b are close up to time
tf (cab) and then b and c start being close at ts(cbc), all three aircraft belong to the
same cluster, even if |ts(cbc) − tf (cab)| is relatively big. To solve this issue, a new
relation ρ is introduced in [16] for expressing the temporal proximity of conflicts
defined by the relation Ch,v

T :

cab ρ cbc ⇔ min
t
′∈[ts(cab),tf (cab)],t

′′∈[ts(cbc),tf (cbc)]
|t′ − t

′′ | < ∆

where ∆ ∈ R represents a time threshold.
Each cluster of aircraft corresponds to one equivalence class of the transitive closure
of the proximity relation ρ. A cluster corresponding to the equivalence class with
representative cab, denoted as [cab]ρ, is built by the union of all aircraft in it, i.e. as

⋃

(r,s)∈[cab]ρ

{r, s}

Note that in this case clusters do not have to be disjoint, and time specification
is therefore needed, e.g., an aircraft can be part of a given cluster only within a
specified time interval.

In [8], clusters are built as equivalence classes of aircraft where the equivalence is
the transitive closure of the relation Ch,v

T for T = {t∗}, for each fixed discretized
time instant t∗ in some look-ahead time horizon. Clusters with less than 5 aircraft
are not taken into account, and such aircraft are put in so-called background traffic.

Project MAICA (Modelling and Analysis of the Impact of the Changes in ATM –
briefly described in [73]) aimed at evaluating the impact of several changes in ATM
(including autonomous aircraft) to ATM performance.
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The definition of cluster in this project is rather vague (unfortunately, reports are
not available, and all information is extracted from other reviews and references).
Similarly to [16], aircraft clusters are built based on a proximity relation, which,
however, considers both the temporal and spatial proximity of aircraft pairs defined
by relation Ch,v

T . The idea is that aircraft a, b and aircraft c, d with cab, ccd ∈ Ch,v
T

should belong to the same aircraft cluster only if the event where a and b get close one
to the other (which is the reason why cab ∈ Ch,v

T ) is both spatially and temporarily
close to the event where c and d get close one to the other. Neither in this case the
aircraft clusters have to be disjoint, therefore a time specification of the inclusion of
an aircraft into a given cluster may be needed.

It is worth also mentioning the fact that innovative cluster definitions are proposed
in the Master thesis of G. Aigoin, which is not available, but whose contribution is
briefly described in [23].
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3 A dynamical approach to intrinsic air traffic complex-

ity characterization

As discussed in Chapter 2, air traffic complexity has been typically studied with
the objective of quantifying the workload of air traffic controllers in handling air
traffic. The workload of a controller is determined by two aspects: an intrinsic
complexity related to the air traffic structure, and a subjective component related
to the controller himself/herself (cognitive strategies and individual characteristics).
Most complexity metrics proposed in the literature aim at capturing both these
aspects within a single aggregate indicator of “perceived complexity”. A measure
of the intrinsic air traffic complexity aspect only is instead needed within a highly
automated ATM system.

Site visits to air traffic facilities and a review of previously identified complexity
factors suggests that organization in the distribution of aircraft positions and speeds
can have an important effect on the perceived complexity of the traffic situation [39].
In particular, situations where the relative distances between aircraft do not change
over time are more predictable and easier to control. These situations are classified
as fully organized traffic. On the other hand, quasi-random situations are difficult
to handle and are thus associated with high complexity.

In this section we describe a dynamical approach to complexity characterization: a
complexity indicator which quantifies the level of organization of the air traffic is
introduced by using tools borrowed from the theory of dynamical systems.

3.1 The underlying principle

In order to capture the complexity associated to a lack of organization, an air traffic
situation can be modeled by an evolution equation, with the aircraft trajectories
interpreted as integral lines of some dynamical system. The Lyapunov exponents of
the dynamical system provide an indicator of the air traffic complexity, allowing for
the identification of different organizational structures of the aircraft speed vectors
such as translation, rotation, divergence, convergence, or a mix of them. Lyapunov
exponents are a standard complexity measure adopted in dynamical systems theory.
They are the natural generalization to time dependent linear differential equations of
the eigenvalues for autonomous linear systems and characterize the growth rates of
the solution. For systems described by nonlinear differential equations, they measure
the rate of exponential convergence or divergence of nearby trajectories, and can
be taken as indicators of the level of order/disorder of a system. Quantitatively,
two trajectories with initial relative position δx0 diverge as eλt‖δx0‖, where λ is a
Lyapunov exponent. The rate of separation can be different for different orientations
of the initial separation vector δx0. Thus, there is a whole spectrum of Lyapunov
exponents. The number of Lyapunov exponents is upper bounded by the dimension
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of the state space of the dynamical system. The value taken by the Lyapunov
exponents at a certain position represents the local contraction/expansion rate of
the field. The larger is a positive Lyapunov exponent, the higher is the rate at which
one loses the ability to predict the system response. Those areas where the traffic is
predictable are then easily identified by plotting the air traffic complexity map that
is the largest Lyapunov exponent as a function of the airspace position.

The claim is that high air traffic complexity is associated with high Lyapunov ex-
ponents.

The part which follows is largely taken from the draft paper [74] by S. Puechmorel
under the iFly project. For more details on Lyapunov exponents, the reader is
referred to [5].

3.2 Lyapunov exponents as complexity indicator

3.2.1 Definition and properties

We start by recalling some basic notions of dynamical system theory.

Definition 1 Let M ⊆ <n be a smooth manifold. A flow on M is a mapping
ψ : <×M→M such that:

• ψ(0, x) = x, ∀x ∈M;

• ψ(t + s, x) = ψ(t, ψ(s, x)), ∀x ∈M, ∀s, t ∈ <.

The pair (M, ψ) constitutes a continuous time dynamical system with state space
M, and x(·) = ψ(·, x0) : < → M is the trajectory associated with x0 ∈ M, i.e.,
such that x(0) = x0.

Remark 1 We restrict here our attention to continuous time systems described by
flows, which are the objects of interest for our complexity application; however, it is
possible to extend the discussion to discrete time systems resulting in iterated maps.
Most of the time extra assumptions are made on the flow. For example, measur-
ability (resp. continuity) with respect to the couple (t, x) yields measurable (resp.
continuous or topological) flows. Smoothness assumptions are generally made with
respect to the state space variable x only: a flow is of class Ck if the mapping
ψ(t, ·) : M→M is differentiable up to order k and the resulting derivative ψ(k) is
continuous as a mapping <×M→M. The two previous properties are often called
cocycle properties.

According to Definition 1, flows are two-sided in time, i.e., it is possible to set
arbitrary values for time t. Very often however, flows are implicitly defined by a
differential equation and fail to be defined at every time or everywhere on M. To
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cope with this situation, the relaxed notion of local flow is introduced. The only
important modification to the definition is that ψ is a mapping from D ⊂ <×M→
M, satisfying the cocycle conditions and with the domain D such that:

• D is open, non void;

• Dx = {t ∈ <|(t, x) ∈ D} is an open interval containing 0, for any x ∈M;

• t ∈ Dψ(s,x) if and only if t + s ∈ Dx.

With the previous notation, Dx = {τ−(x), τ+(x)}, where τ+(x) (τ−(x)) is the for-
ward (backward) explosion time of the trajectory starting at x at time t = 0. A
dynamical system will be defined in the following by a local flow. The domain D
is assumed to be implicit from the differential equation generating the flow unless
otherwise noted.

Consider a system governed by the linear differential equation ẋ(t) = Ax(t) in <n.
The behavior of x(t) as time grows to infinity can be derived from the eigenvalues
of A. However, even by relaxing only the fact that the system is autonomous (i.e.
ẋ(t) = A(t)x(t)) this simple approach breaks down and knowing the eigenvalues
of A(t) is of little help to understand the asymptotic behavior of the system. It
turns out that the right definition is a kind of local shear factor called the Lyapunov
exponents. We shall start by introducing Lyapunov exponents for the linear system
described by ẋ(t) = A(t)x(t). Lyapunov exponents for ẋ(t) = A(t)x(t) play the
same role in asymptotic stability analysis as the real parts of the eigenvalues of A

for ẋ(t) = Ax(t), and in fact they are given by the real parts of the eigenvalues of
A in this case. The considerations developed in the linear time-varying setting will
be useful when dealing with nonlinear systems.

Let x(t) = φ(t)x be the solution of the non autonomous linear differential equa-
tion ẋ(t) = A(t)x(t) initialized with x(0) = x. The (forward) Lyapunov exponent
associated with x ∈ <n is defined as:

λ(x) = lim sup
t→+∞

1
t

log ‖φ(t)x‖

One can define similarly the backward Lyapunov exponent by considering φ(−t)x
instead of φ(t)x. Conventionally, λ(0) = −∞.

Remark 2 In numerical analysis, Lyapunov exponents are studied to quantify the
sensitivity to the initial condition of the solution to a differential equation. In-
deed, the Lyapunov exponent λ(x) measures the mean (exponential) rate of conver-
gence/divergence of two trajectories with initial relative position δx(0) = x. Note
in fact that δx(t) = φ(t)x represents the evolution in time of the distance between the
two trajectories, so that λ(x) = lim supt→+∞

1
t log ‖δx(t)‖ = lim supt→+∞

1
t log ‖δx(t)‖

‖x‖
is such that ‖δx(t)‖ ' eλ(x)t‖x‖.
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Proposition 1 Let x, y ∈ <n be such that λ(x) 6= λ(y). Then, x and y are linearly
independent.

Proof: The proposition can be easily established by first showing two simple
properties of Lyapunov exponent. First, let a 6= 0 be a real number. Then:

λ(ax) = lim sup
t→+∞

1
t

log ‖φ(t)ax‖ = lim sup
t→+∞

1
t

(
log ‖φ(t)x‖+ log(|a|)

= lim sup
t→+∞

1
t

log ‖φ(t)x‖ = λ(x)

Now, consider two vectors x and y. Since ‖φ(t)(x + y)‖ ≤ 2max(‖φ(t)x‖, ‖φ(t)y‖),
we have

λ(x + y) = lim sup
t→+∞

1
t

log ‖φ(t)(x + y)‖ ≤ max(λ(x), λ(y))

From this it can be deduced that if λ(x) > λ(y), then

λ(x + y) ≤ λ(x) ≤ max(λ(x + y), λ(−y))

and since λ(x) > λ(y) the max in the right hand side must be λ(x + y) so that
finally if λ(x) 6= λ(y), then

λ(x + y) = max(λ(x), λ(y))

Now we are ready to prove the proposition since if x and y are two non zero vectors
such that λ(x) 6= λ(y), then if ax + by = 0, λ(0) = −∞ = max(λ(x), λ(y)), which
in turn implies that a = b = 0.

It is interesting to note that the previous result is obtained by using only the fol-
lowing three fundamental properties of a Lyapunov exponent function λ : <n →
<∪ {−∞}

• λ(ax) = λ(x), for any x ∈ <n and a ∈ < \ {0};

• λ(x + y) ≤ max(λ(x), λ(y)), for any x, y ∈ <n, with equality holding if λ(x) 6=
λ(y)

• λ(0) = −∞ (normalization condition)

Functions satisfying these requirements are called characteristic exponents and share
most of the salient features of Lyapunov exponents. From the linear independence of
vectors with different Lyapunov exponents, it is clear that there exists only a finite
number p ≤ n of Lyapunov exponents λ1, λ2, . . . , λp. Assuming that the exponents
are ordered λ1 < λ2 < · · · < λp, we can construct a filtration {0} = V0 ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vp = <n of <n such that λ(x) = λi for x ∈ Vi \ Vi−1. The multiplicity
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of λi is the number ki = dimVi − dimVi−1. A basis {e1, e2, . . . , en} of <n is normal
(ordered) with respect to the filtration if there exists an increasing sequence ni,,
i = 1, 2, . . . , p, such that {e1, e2, . . . , eni} form a basis of Vi for all i = 1, 2, . . . , p. A
normal basis {e1, e2, . . . , en} is characterized by the fact that:

n∑

i=1

λ(ei) = inf
{ n∑

i=1

λ(fi), {f1, f2, . . . , fn} basis of <n
}

For Lyapunov exponent computations, we need some extra work on orthogonality
relations.

Let <n be considered as it own dual with pairing 〈·, ·〉. Let {e1, e2, . . . , en} and
{f1, f2, . . . , fn} be two dual bases, that is 〈ej , fi〉 = δi,j , ∀i, j = 1, 2, . . . , n. Consider
now a characteristic exponent function γ : <n → < ∪ {−∞} defined by the three
properties mentioned before. Let Γ = {γi, i = 1, . . . , n} be the characteristic expo-
nents associated to {e1, e2, . . . , en} (i.e. γi = γ(ei)) and Γ′ = {γ′i, i = 1, . . . , n} be
the characteristic exponents associated to {f1, f2, . . . , fn} (i.e. γ′i = γ(fi)).

Definition 2 The sets of characteristic exponents Γ, Γ′ are said to be dual if γi +
γ′i ≥ 0, ∀i = 1, 2, . . . , n.

For dual characteristic exponents, we can define the regularity coefficient

Definition 3 The regularity coefficient κ(Λ, Λ′) of the dual characteristic exponents
Γ,Γ′ is

κ(Γ,Γ′) = minmax{γi + γ′i, i = 1, . . . , n}

where the minimum is computed over all possible pairs of basis in duality.

One can check that dual Lyapunov exponents have a positive regularity coefficient.

Definition 4 Dual characteristic exponents Γ, Γ′ are said to be regular if κ(Γ, Γ′) =
0.

Proposition 2 Let Γ, Γ′ be regular exponents. The filtrations associated with Γ and
Γ′ are mutually orthogonal.

If the filtration {0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vp = <n is associated with Γ and
{0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wq = <n with Γ′, orthogonality between the two
filtrations means that

• p = q

• dimVi + dim Wp−i = n, ∀i = 0, 1, . . . , p

• Vi ⊥ Wp−i, ∀i = 0, 1, . . . , p
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The dual equation of the non autonomous linear differential equation ẋ(t) = A(t)x(t)
is given by

ẏ(t) = −AH(t)y(t)

where AH(t) is the Hermitian conjugate of A(t). By simple computations:

d

dt
〈x(t), y(t)〉 = 〈A(t)x(t), y(t)〉+ 〈x(t),−AH(t)y(t)〉

= 〈A(t)x(t), y(t)〉 − 〈A(t)x(t), y(t)〉 = 0

so that orthogonality is preserved if x(0) and y(0) are orthogonal. Taking dual bases
of <n, it can be proven that the Lyapunov exponents Λ associated with the original
equation and Λ′ associated with the dual equation are dual. The original system is
said to be regular if Λ and Λ′ are regular.
Now we formulate the key theorem for the computation of the Lyapunov exponents
under the assumption of regularity of the system.

Theorem 1 If the system described by ẋ(t) = A(t)x(t) is regular, then, for any
normal ordered basis {e1, e2, . . . , en} and any k = 1, 2, . . . , n:

lim
t→+∞

1
t

log | det Gk(t)| = 2
k∑

i=1

λ(ei) (1)

where Gk(t) is the Gram matrix formed from the inner products: [Gk(t)]i,j =
〈ei(t), ej(t)〉, i, j = 1, . . . , k, and ei(t) the solution of the differential equation with
initial condition ei(0) = ei.

The Gram matrix Gk(t) can be obtained from the normal fundamental matrix so-
lution to ẋ = A(t)x, that is the matrix E(t) satisfying the differential equation
Ė(t) = A(t)E(t) with initial condition E(0) given by the matrix with the vectors
{e1, e2, . . . , en} of the normal basis on the columns. Lyapunov showed that a nor-
mal basis always exists and how it can be constructed from a fundamental matrix
solution, [25].

It is worth noting that in equation (1) we have a standard limit instead of the lim sup
as in the definition of Lyapunov exponents, and that the determinant of the Gram
matrix is the square of the volume of the parallelepiped spanned by the vectors
e1(t), . . . , ek(t), so that Lyapunov exponents can be viewed as local rates of growth.

Lemma 1 Let Q : < → GLn be a smooth mapping with value in the linear group
of dimension n. The change of variable y(t) = Q−1(t)x(t) results in the equation:

ẏ(t) = M(t)y(t)

with M(t) = Q−1(t)(A(t)Q(t)− Q̇(t))
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The proof of this lemma is straightforward.

Lemma 2 There exists a smooth change of variables Q with values in the unitary
matrices such that matrix M(t) = Q−1(t)(A(t)Q(t)− Q̇(t)) in the previous equation
is upper triangular.

Proof: Let {e1, . . . , en} be a basis of <n and let ei(t), i = 1, . . . , n, be the solution
of the equation ẋ(t) = A(t)x(t) with initial condition ei(0) = ei. Let Q(t)R(t) be
the QR-decomposition of the matrix E(t) with columns {e1(t), . . . , en(t)}. Since
Ė(t) = A(t)E(t), i.e., E(t) is a fundamental solution matrix for ẋ = A(t)x, we have

Ṙ(t) = (QH(t)A(t)Q(t)−QH(t)Q̇(t))R(t) = M(t)R(t)

Given that the solution R(t) to this differential equation has to be upper triangular,
then, matrix M(t) must be upper triangular as claimed.

This lemma from Perron is the key ingredient in the proof of the main theorem.
Moreover, it is interesting in its own right and thus has been included. Perron’s
lemma is in fact adopted in nearly all numerical algorithms for computing the k

largest Lyapunov exponents by temporal integration. Lyapunov exponents are in-
variant with respect to the smooth change of coordinates by the unitary matrices
Q(t) (since it satisfies the norm-preserving property), [24]. Moreover, regularity is
preserved under such transformation, [24].

Consider the nonlinear system described by the differential equation:

ẋ(t) = X(x(t))

and denote the corresponding flow by ψ. Consider the trajectory x(t) = ψ(t, x0)
associated with x(0) = x0. The Lyapunov exponents are a characterization of the
asymptotic properties of the solution ψ(t, x0) via analysis of the linearized problem.
The linear approximation of the system around ψ(t, x0) is given by

δ̇x(t) = A(t, x0)δx(t)

where Ax0(t) := DxX(x)|x=ψ(t,x0) with Dx denoting the derivative with respect to
the x variable. Matrix A(t, x0) of the linear approximation describes the instanta-
neous rate of shearing of the infinitesimal neighborhood of x(t) = ψ(t, x0).

From the Taylor expansion of the flow:

δx(t) := ψ(t, x0 + δx0)− ψ(t, x0) = Dx(ψ(t, x))|x=x0δx0 + . . .

it follows that the deformation of an infinitesimal neighborhood of the initial con-
dition after the time interval t is given by Dx(ψ(t, x0)) := Dx(ψ(t, x))|x=x0 , which
represents the shearing after a finite time t. Its eigenvalues and eigenvectors describe
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deformation of an initial infinitesimal sphere of neighboring trajectories into an el-
lipsoid time t later. Nearby trajectories separate exponentially along the unstable
directions and approach each other along the stable directions.

The Lyapunov exponent at x0 associated with x is defined as

λx0(x) = lim sup
t→+∞

1
t

log ‖Dx(ψ(t, x0))x‖ (2)

and describes the mean exponential rate of divergence/convergence of the trajectory
obtained by a perturbation δx0 = x of the initial state x0 (lim supt→+∞

1
t log ‖δx(t)‖

‖δx0‖ )
computed based on the linear approximation.

Under standard regularity assumptions on X:

d

dt
Dx(ψ(t, x0)) = Ax0(t)Dx(ψ(t, x0))

with Dx(ψ(0, x0)) = I. Thus Dx(ψ(t, x0)) can be viewed as a fundamental solu-
tion matrix for the linear differential equation ẏ(t) = Ax0(t)y(t), which makes the
discussion on the linear case useful also in the nonlinear setting of interest.

It is worth noting that Dxψ(t, x0) defines a linear cocycle over the flow ψ.

Definition 5 Let (M, ψ) be a dynamical system where ψ is a local flow with domain
D. A linear (invertible) cocycle over ψ is a mapping S : D → GL(<) such that:

• S(0, x) = I, ∀x ∈M;

• S(t + s, x) = S(s, ψ(t, x))S(t, x), ∀x ∈M, ∀t, s ∈ <.

For a linear cocycle S(t, x), the associated Lyapunov exponents are defined as:

λx = lim sup
t→+∞

1
t

log ‖S(t, x)‖ (3)

where ‖S(t, x)‖ is the norm of matrix S(t, x) induced by the 2-norm for vectors
(largest singular value) or, equivalently, the square root of the maximum eigenvalue
of the positive definite symmetric matrix S(t, x)T S(t, x).

According to the definition (2) of Lyapunov exponents of the dynamical system
ẋ(t) = X(x(t)) at x0, equation (3) with x = x0 provides the largest Lyapunov
exponent of the dynamical system at x0 when applied to the linear cocycle S(t, x0) =
Dxψ(t, x0).

3.2.2 Computational aspects

Numerical pitfalls. Computing Lyapunov exponents amounts to integrate a dif-
ferential equation, giving the linear cocycle S(t, x0) = Dxψ(t, x0). Nearly all stan-
dard algorithms can be used for that purpose but one quickly realize that the prob-
lem is far from being well conditioned. In fact, most of the time it is easy to obtain

36



the flow ψ(t, x) (needed for computing matrix Ax0(t)) with good accuracy but by
construction S(t, x0) tends to grow exponentially fast in some directions (corre-
sponding to positive Lyapunov exponents) and to decay exponentially fast in others
(corresponding to negative Lyapunov exponents), thus giving a condition number
increasing again exponentially. For this reason, it would be extremely inaccurate
to compute Lyapunov exponents by merely integrating the linear cocycle, and some
kind of rescaling is needed to recover good numerical properties. There is abun-
dant literature on the subject, however all methods fall into one of two categories,
i.e. spatial integration or temporal integration. Direct application of the definition
gives the second approach while the ergodic theorem gives the first one. Both have
advantages and drawbacks:

• Spatial integration is efficient and free from the slow convergence phenomenon
occurring sometimes in temporal integration. However, in order to use the
ergodic theorem, one must find an invariant measure. Most of the time, it has
to be done by covering algorithms.

• Temporal integration can suffer from slow convergence. Moreover, it requires
periodic rescaling to avoid numerical problems.

In the complexity application, only the temporal approach has been tested.

Algorithms based on differential geometry. All the machinery used in this
part is borrowed from the journal paper [12] by T.J. Bridges and S. Reich. Basically,
the trick is to use Lemma 2 and Theorem 1 to compute the k largest Lyapunov
exponents. The problem reduces then to continuously update the QR factorization
(or a polar decomposition which is very similar except that the right hand side matrix
is symmetric instead of being upper triangular). The differential equation satisfied
by Q can be established by noticing first that the matrix M(t) = QH(t)A(t)Q(t)−
QH(t)Q̇(t) is upper triangular, so that adding its conjugate yields a symmetric
matrix with the same coefficients except on the diagonal where they are doubled.
However,

MH(t) + M(t) = QH(t)(A(t) + AH(t))Q(t)

since QH(t)Q̇(t)+Q̇H(t)Q(t) = 0 (Q(t) is unitary so the derivative of QH(t)Q(t) = I

vanishes). This implies that M(t) can be obtained without the knowledge of Q̇(t).
Now, simply use the relation:

Q̇(t) = A(t)Q(t)−Q(t)M(t)

This differential equation can be solved readily by standard Runge-Kutta integra-
tion. However, the orthogonality of Q is hard to preserve, so that efficient imple-
mentations require specific algorithms. A natural approach is to use integrators
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working on the Stiefel manifold on which Q lives. We refer to the previously men-
tioned paper for details. It seems possible (although not implemented yet) to use
the Levi-Civita connection on the flag manifold to obtain closely related algorithm,
but enforcing the fact that there is filtration adapted to Lyapunov exponents. The
currently used algorithm for computing Lyapunov exponents is the continuous polar
decomposition updating.

3.3 Modelling air traffic as a dynamical system

Observed aircraft trajectories constitute only a finite set of the possible integral lines
of the system, hence some extra assumptions are needed to determine a dynamical
system describing the air traffic situation under consideration. Appropriate smooth-
ness conditions are required to ensure that the solution to the problem is unique.
More precisely, given the aircraft velocities vi, i = 1, 2, . . . , N , at the measurement
points xi, i = 1, 2, . . . , N , we determine the autonomous nonlinear dynamical system
described by

ẋ(t) = X(x(t)),

by using vector spline interpolation to fit the vector field X : <3 → <3 to the
available interpolation data {(xi, vi), i = 1, 2, . . . , N}. Vector field X must satisfy
the interpolation constraints X(xi) = vi, i = 1, 2, . . . , N , while minimizing the
smoothness div-curl energy functional. If X is a vector field of class at least C2,
then, the div-curl energy of X in the domain U ⊂ <3 is given by:

E(X) =
∫

U
α‖∇divX(x)‖2 + β‖∇curlX(x)‖2dx

where divX and curlX respectively denote the divergence field and the rotational
field of the vector field X, ∇ is the gradient operator, and α and β are positive
real numbers controlling the relative weight of smoothness imposed on variations of
the divergence field and the rotational field, respectively. It is a well known result
in spline theory that the vector field X minimizing E(X) under the constraints
X(xi) = vi, i = 1, 2, . . . , N is of the form :

X(x) =
N∑

i=1

ciψ(x− xi) + θ(x)

where θ(x) = Ax+b is an element of the kernel of the differential operator considered
in the energy functional and ψ is the elementary solution of the operator P :

P = αdivT∇T∇div + β curlT∇T∇curl

If α is much greater than β, the optimal vector field X will tend to have a nearly
constant divergence, while if β is much greater than α, the curl will be nearly
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constant. An interesting special case occurs when α = β.
When α = β, P reduces to ∆2 and ψ is the biharmonic kernel on all three coordinates
which becomes independent. The corresponding splines are the well known thin-
plate splines. Thus in the case of α = β, the vector spline problem is converted
into three separated scalar thin-plate spline problems, which causes a dramatic
decrease in computation. The drawback is that the thin-plate spline deals with the
components of a vector independently, hence the interpolating vector field does not
preserve possible significant correlations between them. The procedure described
above can be extended to time-dependent vector fields with a slight modification
of energy functional. In a case of short time periods (say around 10 sampled or
forecasted positions on each trajectory) it is possible to compute an interpolating
vector field for 5000 aircraft within 10 minutes.

39



4 Conclusions and future work

Based on the review of the studies in the literature on air traffic complexity, we can
conclude that

• most complexity metrics are strictly related to the current ground-based ATM
system, where ATCs are in charge of guaranteeing safety in air traffic, and
cannot be extended to the autonomous aircraft context because they incorpo-
rate a measure of workload and often strongly dependent on the sector-based
airspace structure;

• those metrics that do not incorporate the measured workload but depend
explicitly on the controller in place are difficult to apply to the autonomous
aircraft context because of the decentralized time-varying structure of the
control in the self-separation airspace, possibly involving a human in the loop
component;

• those approaches providing a single aggregate indicator of complexity often
lack of an operational interpretation;

• approaches providing local information through a complexity map may be
useful for trajectory management by isolating critical areas that should be
avoided;

• in view of the above considerations, the approaches in the literature that
appear more portable to the autonomous aircraft context are those providing
a measure of intrinsic complexity of air traffic;

• the time dependence aspect should be better focused, introducing approaches
to air traffic complexity evaluation specific for the long term (trajectory man-
agement) and the short/mid term (conflict detection and resolution), eventu-
ally accounting for uncertainty in the aircraft trajectory prediction.

Our plan for the future work under WP3.2 is

i) specify the requirements on complexity metrics for the iFly A3 Concept of
Operations defined in work package 1;

ii) further develop the dynamic approach to intrinsic air traffic complexity char-
acterization described in Chapter 3;

iii) study alternative complexity metrics tailored to the short/medium term and
to the long term.
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Regarding the development of alternative complexity metrics, some preliminary
ideas are as follows.

As for the long term, the goal is to allow for the identification of critical areas that
should be possibly avoided. Aircraft density will be a relevant factor jointly with its
evolution in time. Evaluation of complexity will be based on the intended aircraft
trajectories, with the understanding that each aircraft should generally conform to
its current intent information. Complexity will be recomputed from time to time to
take care of possible modifications of the aircraft intent. Unexpected deviations at a
finer time scale will be accounted for by the short/medium term complexity metric.
Since complexity will be evaluated based on the intent information and current
state of all aircraft in the self-separation airspace, it may be more convenient to
perform computations on the ground and distribute only the (compact) description
of the critical areas to aircraft, rather than performing computations on-board of
all aircraft. Indications on how to set a generally applicable threshold to distinguish
between low and high complexity areas will be provided. This is actually a critical
aspect for the intrinsic complexity measure described in Chapter 3.

As for the short/medium term, the goal is to identify air traffic encounters that
could generate situations of conflict difficult to solve based on air traffic measure-
ments only, without directly referring to the adopted resolution methodology. A
way of achieving this is to evaluate complexity in terms of availability of feasible
resolution maneuvers for accommodating an additional aircraft entering the airspace
region or for solving conflicts due to deviations of the aircraft from their planned
trajectory: the larger is the solution space, the lower is complexity. Most likely a
probabilistic approach will be taken.
In contrast with the input-output model in Section 2.2.5 where complexity is mea-
sured as the control effort required for implementing a specific optimal conflict
resolution strategy, the idea is that complexity should be measured as the effort
required for determining a feasible, not necessarily optimal, resolution maneuver.
This makes complexity evaluation independent of the adopted optimality criterion.
The research on trajectory flexibility, related to the aircraft manoeuvrability and to
its capability of accommodating unexpected disturbances, and that on probabilistic
conflict/collision prediction [72, 42, 10, 9] might turn out to be useful for developing
this approach.
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